Automatic Prediction of Parser Accuracy

نویسندگان

  • Sujith Ravi
  • Kevin Knight
  • Radu Soricut
چکیده

Statistical parsers have become increasingly accurate, to the point where they are useful in many natural language applications. However, estimating parsing accuracy on a wide variety of domains and genres is still a challenge in the absence of gold-standard parse trees. In this paper, we propose a technique that automatically takes into account certain characteristics of the domains of interest, and accurately predicts parser performance on data from these new domains. As a result, we have a cheap (no annotation involved) and effective recipe for measuring the performance of a statistical parser on any given domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neural Probabilistic Structured-Prediction Model for Transition-Based Dependency Parsing

Neural probabilistic parsers are attractive for their capability of automatic feature combination and small data sizes. A transition-based greedy neural parser has given better accuracies over its linear counterpart. We propose a neural probabilistic structured-prediction model for transition-based dependency parsing, which integrates search and learning. Beam search is used for decoding, and c...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Studying impressive parameters on the performance of Persian probabilistic context free grammar parser

In linguistics, a tree bank is a parsed text corpus that annotates syntactic or semantic sentence structure. The exploitation of tree bank data has been important ever since the first large-scale tree bank, The Penn Treebank, was published. However, although originating in computational linguistics, the value of tree bank is becoming more widely appreciated in linguistics research as a whole. F...

متن کامل

ارائۀ راهکاری قاعده‌مند جهت تبدیل خودکار درخت تجزیۀ نحوی وابستگی به درخت تجزیۀ نحوی ساخت‌سازه‌ای برای زبان فارسی

In this paper, an automatic method in converting a dependency parse tree into an equivalent phrase structure one, is introduced for the Persian language. In first step, a rule-based algorithm was designed. Then, Persian specific dependency-to-phrase structure conversion rules merged to the algorithm. Subsequently, the Persian dependency treebank with about 30,000 sentences was used as an input ...

متن کامل

Parser Adaptation and Projection with Quasi-Synchronous Grammar Features

We connect two scenarios in structured learning: adapting a parser trained on one corpus to another annotation style, and projecting syntactic annotations from one language to another. We propose quasisynchronous grammar (QG) features for these structured learning tasks. That is, we score a aligned pair of source and target trees based on local features of the trees and the alignment. Our quasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008